Sign Up To The Free Email Newsletter!

Want to get notified whenever we produce the latest content ? Then subscribe now to start receiving hot updates from today.

26 January 2013

DAMS AND RESERVOIRS

By : Unknown
On : 05:21

A dam is any barrier that holds back water; dams are primarily used to save, manage, and/or prevent the flow of excess water into specific regions. In addition, some dams are used to generate hydropower. This article examines man-made dams but dams can also be created by natural causes like mass wasting events or even animals like the beaver.
Another term often used when discussing dams is reservoir. A reservoir is a man-made lake that is primarily used for storing water. They can also be defined as the specific bodies of water formed by the construction of a dam. For example, the Hetch Hetchy Reservoir in California’s Yosemite National Park is the body of water created and held back by the O’Shaughnessy Dam.
Dams and water reservoirs is very important factor for any economy and Karnataka in South India region is very rich in this. Karnataka has many dams which is making india economy strong and better.
Dams in Karnataka is very popular serving the purpose of people of Karnataka and Bangalore. Karnataka is much enriched in terms Dams in South India.
Tourist attraction of Dams is growing every day. For example KRS dam is best example for attracting Tourist to the Dam Spot. BangaloreOrbit.com provides ver broad information for Dams in karnataka
Post independence we have made lots of progress in Dam and Water Reservoirs in India. Dams is basically used for Power generation, Water supply, Stabilize water flow / irrigation, Flood prevention, Land reclamation, Water diversion, Recreation and aquatic beauty. India is very rich is Dam and India is having some of the largest Dams and Reservoirs. Tourist Spot near Dams is very much popular and good sources for attracting tourists

Types of Dams

By size:

International standards define large dams as higher than 15–20 meters and major dams as over 150–250 meters in height.
The tallest dam in the world is the 300-meter-high Nurek Dam in Tajikistan.
Intended purposes include providing water for irrigation to a town or city water supply, improving navigation, creating a reservoir of water to supply industrial uses, generating hydroelectric power, creating recreation areas or habitat for fish and wildlife, retaining wet season flow to minimise downstream flood risk and containing effluent from industrial sites such as mines or factories. Some dams can also serve as pedestrian or vehicular bridges across the river as well. When used in conjunction with intermittent power sources such as wind or solar, the reservoir can serve as pumped water storage to facilitate base load dampening in the power grid. Few dams serve all of these purposes but some multi-purpose dams serve more than one.

Rock-fill dams

Rock-fill dams are embankments of compacted free-draining granular earth with an impervious zone. The earth utilized often contains a large percentage of large particles hence the term rock-fill. The impervious zone may be on the upstream face and made of masonry, concrete, plastic membrane, steel sheet piles, timber or other material. The impervious zone may also be within the embankment in which case it is referred to as a core. In the instances where clay is utilized as the impervious material the dam is referred to as a composite dam. To prevent internal erosion of clay into the rock fill due to seepage forces, the core is separated using a filter. Filters are specifically graded soil designed to prevent the migration of fine grain soil particles. When suitable material is at hand, transportation is minimized leading to cost savings during construction. Rock-fill dams are resistant to damage from earthquakes. However, inadequate quality control during construction can lead to poor compaction and sand in the embankment which can lead to liquefaction of the rock-fill during an earthquake. Liquefaction potential can be reduced by keeping susceptible material from being saturated, and by providing adequate compaction during construction. An example of a rock-fill dam is New Melones Dam in California.

Earth-fill dams

Earth-fill dams, also called earthen, rolled-earth or simply earth dams, are constructed as a simple embankment of well compacted earth. A homogeneous rolled-earth dam is entirely constructed of one type of material but may contain a drain layer to collect seep water. A zoned-earth dam has distinct parts or zones of dissimilar material, typically a locally plentiful shell with a watertight clay core. Modern zoned-earth embankments employ filter and drain zones to collect and remove seep water and preserve the integrity of the downstream shell zone. An outdated method of zoned earth dam construction utilized a hydraulic fill to produce a watertight core. Rolled-earth dams may also employ a watertight facing or core in the manner of a rock-fill dam. An interesting type of temporary earth dam occasionally used in high latitudes is the frozen-core dam, in which a coolant is circulated through pipes inside the dam to maintain a watertight region of permafrost within it.

Types of Reservoirs

Like dams, there are different types of reservoirs as well but they are classified based on their use. The three types are called: a valley dammed reservoir, a bank-side reservoir, and a service reservoir. Bank-side reservoirs are those formed when water is taken from an existing stream or river and stored in a nearby reservoir. Service reservoirs are mainly constructed to store water for later use. They often appear as water towers and other elevated structures.
The first and usually largest type of reservoir is called a valley dammed reservoir. These are reservoirs that are located in narrow valley areas where tremendous amounts of water can be held in by the valley’s sides and a dam. The best location for a dam in these types of reservoirs is where it can be built into the valley wall most effectively to form a water tight seal.
To construct a valley dammed reservoir, the river must be diverted, usually through a tunnel, at the start of work. The first step in creating this type of reservoir is the pouring of a strong foundation for the dam, after which construction on the dam itself can begin. These steps can take months to years to complete, depending on the size and complexity of the project. Once finished, the diversion is removed and the river is able to flow freely toward the dam until it gradually fills the reservoir.

Objectives

Despite their controversy, dams and reservoirs serve a number of different functions but one of the largest is to maintain an area’s water supply. Many of the world’s largest urban areas are supplied with water from rivers that are blocked via dams. San Francisco, California for example, gets the majority of its water supply from the Hetch Hetchy Reservoir via the Hetch Hetchy Aqueduct running from Yosemite to the San Francisco Bay Area.
Another major use of dams is power generation as hydroelectric power is one of the world’s major sources of electricity. Hydropower is generated when the potential energy of the water on the dam drives a water turbine which in then turns a generator and creates electricity. To best make use of the water’s power, a common type of hydroelectric dam uses reservoirs with different levels to adjust the amount of energy generated as it is needed. When demand is low for instance, water is held in an upper reservoir and as demand increases, the water is released into a lower reservoir where it spins a turbine.
Some other important uses of dams and reservoirs include a stabilization of water flow and irrigation, flood prevention, water diversion and recreation.

0 Comments:

Post a Comment

Thanks to Ur Support

Are you Awesome? Legend has it that Awesome people can and will share this post!
DAMS AND RESERVOIRS